If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121k^2-390k+81=0
a = 121; b = -390; c = +81;
Δ = b2-4ac
Δ = -3902-4·121·81
Δ = 112896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{112896}=336$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-390)-336}{2*121}=\frac{54}{242} =27/121 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-390)+336}{2*121}=\frac{726}{242} =3 $
| 5x+1x=-2 | | -2(4y-3)+3y=7(y+2) | | 4x-2(-5x+4)=64 | | 1=2/3(y-1)-1/5(2y-3) | | 4x-7=-25+x | | -2x^2+24x^2-64x=0 | | 3=1/3-2x | | x^2+5x-7=11x | | x-15=2x+23 | | 3/5x-10+1/5(40-10)=0 | | -8x+25=24 | | 80=4u+12 | | 2x+x+8=2x+1+x+x | | 2(y+4)+3y=-12 | | 23z+3+9z=-13 | | x^2+14x=-12 | | 6*6^5x=36*6^x-7 | | 2x+1+4=x+16+x | | -3(x+9)=6x+27 | | 3r2-26r=16 | | 1+2x3=7 | | x^2−14x+45=0 | | 51=-3x7 | | 78=n-(-43) | | (x+1)(×-1)=x²-x+45 | | 5.4y=0.4 | | 6x+15=2x+67 | | 8k-5(-5+3)=66 | | 16=t=4000 | | -23-x=-41 | | 1÷3t+6=8÷3 | | 1/4(8x+4)=1 |